Showing posts with label HPE Vertica. Show all posts
Showing posts with label HPE Vertica. Show all posts

Tuesday, March 08, 2016

IoT Plus Big Data Analytics Translate into Better Services Management at Auckland Transport

Transcript of a discussion on the impact and experience of using Internet of Things technologies together with big data analysis in a regional public enterprise.

Listen to the podcast. Find it on iTunes. Get the mobile app. Download the transcript. Sponsor: Hewlett Packard Enterprise.

Dana Gardner: Hello, and welcome to the next edition of the HPE Discover business transformation series. I'm Dana Gardner, Principal Analyst at Interarbor Solutions, your host and moderator for this ongoing discussion on IT innovation and how it’s making an impact on people’s lives.

Gardner
Our next top innovator case study discussion explores the impact and experience of using Internet of Things (IoT) technologies together with big data analysis to better control and manage a burgeoning transportation agency in New Zealand.

To hear more about how fast big data supports rapidly-evolving demand for different types of sensor outputs -- and massive information inputs -- please join me in welcoming our guest, Roger Jones, CTO for Auckland Transport in Auckland, New Zealand. Welcome, Roger.

Roger Jones: Thank you.

Gardner: Tell us about your organization, its scope, its size and what you're doing for the people in Auckland.
Start Your
HPE Vertica
Community Edition Trial Now
Jones: Auckland Transport was formed five years ago -- we just celebrated our fifth birthday -- from an amalgamation of six regional councils. All the transport functions were merged along with the city functions, to form a super-city concept, of which transport was pulled out and set up as a council-controlled organization.

But it's a semi-government organization as well. So we get funded by the government and the ratepayer and then we get our income as well.

We have multiple stakeholders. We're run by a board, an independent board, as a commercial company.

We look after everything to do with transport in the city: All the roads, everything on the roads, light poles, rubbish bins, the maintenance of the roads and the footpaths and the grass bins, boarding lights, and public transport. We run and operate the ferries, buses and trains, and we also promote and manage cycling across the city, walking activities, commercial vehicle planning, how they operate across the ports and carry their cargoes, and also carpooling schemes.

Gardner: Well, that's a very large, broad set of services and activities. Of course a lot of people in IT are worried about keeping the trains running on time as an analogy, but you're literally doing that.

Real-time systems

Jones: Yeah. We have got a lot of real-time systems, and trains. We've just brought in a whole new electric train fleet. So all of the technology that goes with that has to be worked through. That's the real-time systems on the platforms, right through to how we put Wi-Fi on to those trains and get data off those trains.

Jones
So all of those trains have closed-circuit television (CCTV) cameras on them for safety. It's how you get all that information off and analyze it. There's about a terabyte of data that comes off all of those trains every month. It's a lot of data to go through and work out what you need to keep and what you don’t.

Gardner: Of course, you can't manage and organize things unless you can measure and keep track of them. In addition to that terabyte you talked about from the trains, what's the size of the data -- and not just data as we understand it, unstructured data, but content -- that you're dealing with across all these other activities?

Jones: Our traditional data warehouse is about three terabytes, in round numbers, and on the CCTV we take about eight petabytes of data a week, and that's what we're analyzing. That's from about 1,800 cameras that are out on the streets. They're in a variety of places, mostly on intersections, and they're doing a number of functions.

They're counting vehicles. Under the new role, what we want to do is count pedestrians and cyclists and have the cyclists activate the traffic lights. From a cycle-safety perspective, the new carbon fiber bikes don’t activate the magnetic loops in the roads. That's a bone of contention -- they can’t get the lights to change. We'll change all that using CCTV analytics and promote that.

But we'll also be able to count vehicles that turn right and where they go in the city through number plate recognition. By storing that, when a vehicle comes into the city, we would be able to see if they traveled through the city and their average length of stay.

What we're currently working on is putting in a new parking system, where we'll collect all the data about the occupancy of parking spaces and be able to work out, in real time, the probability of getting a car parked in a certain street, at a certain time. Then, we'll be able to make that available to the customer, and especially the tradesman, who need to be able to park to do their business.

Gardner: Very interesting. We've heard a lot about smart cities and bringing intelligence to bear on some of these problems and issues. It sounds like you're really doing that. In order for you to fulfill that mission, what was lacking in your IT infrastructure? What did you need to change, either in architecture or an ability to scale or adapt to these different types of inputs?

Merged councils

Jones: The key driver was, having merged five councils. We had five different CCTV systems, for instance, watched by people manually. If you think about 1,800 cameras being monitored by maybe three staff at a time, it’s very obvious that they can’t see actually what’s happening in real time, and most of the public safety events were being missed. The cameras were being used for reactive investigation rather than active management of a problem at this point in time.

That drove us into what do we were doing around CCTV, the analytics, and how we automate that and make it easy for operators to be presented with, in real-time, here is the situation you need to manage now, and be able to be proactive, and that was the key driver.
There’s a mix of technologies out there, lots and lots of technologies. One of the considerations was which partner we should go with.

When we looked at that and at all the other scenes that are around the city we asked how we put that all together, process it in real time, and be able to make it available again, both to ourselves, to the police, to the emergency services, and to other third-party application developers who can board their own applications using that data. It’s no value if it’s historic.

Gardner: So, a proverbial Tower of Babel. How did you solve this problem in order to bring those analytics to the people who can then make good use of it and in a time frame where it can be actionable?

Jones: We did a scan, as most IT shops would do, around what could and couldn’t be done. There’s a mix of technologies out there, lots and lots of technologies. One of the considerations was which partner we should go with. Which one was going to give us longevity of product and association, because you could buy a product today, and in the changing world of IT, it’s out of business, being bought out, or it’s changed in three years time. We needed a brand that was going to be in there for the long haul.
Start Your
HPE Vertica
Community Edition Trial Now
Part of that was the brand, and there are multiple big brands out there. Did they have the breadth of the toolsets that we were looking for, both from a hardware perspective, managing the hardware, and the application perspective? That’s where we selected Hewlett Packard Enterprise (HPE), taking all of those factors into account.

Gardner: Tell us a bit about what you're doing with data. On the front end, you're using a high-speed approach, perhaps in a warehouse, you're using something that will scale and allow for analytics to take place more quickly. Tell us about the tiering and the network and what you've been able to do with that?

Jones: What we've done is taken a tiered approach. For instance, the analytics on the CCTV comes in and gets processed by the HPE IDOL engine. That strips most of it out. We integrate that into an incident management system, which is also running on the IDOL engine.

Then, we take the statistics and the pieces that we want to keep and we're storing that in HPE Vertica. The parking system will go into HPE Vertica because it’s near real-time processing of significant volumes.

The traditional data warehouse, which was a SQL data warehouse, it’s still very valid today, and it will be valid tomorrow. That’s where we're putting in a lot of the corporate information and tying a lot of the statistical information together so that we have all the historic information around real time, which was always in an old data warehouse.

Combining information

We tie that together with our financials. A lot of smaller changing datasets are held in that data warehouse. Then, we combine that information with the stuff in Vertica and the Microsoft Analytics Platform System (APS) appliances to get us an integrated reporting at the front end in real time.

We're making a lot of that information available through an API manager, so that whatever we do internally is just a service that we can pick up and reuse or make available to whoever we want to make it available to. It’s not all public, but some of it is to our partners and our stakeholders. It’s a platform that can manage that.

Gardner: You mentioned that APS appliance, a Microsoft and HPE collaboration. That’s to help you with that real-time streaming, high velocity, high volume data, and then you have your warehouse. Where are these being run? Do you have a private cloud? Do you have managed hosting, public cloud? Where are the workloads actually being supported?

Jones: The key workloads around the CCTV, the IDOL engine, and Vertica are all are running on HPE kit on our premises, but managed by HPE-Critical Watch. That’s an HPE, almost an end-to-end service, but it just happens to be on our facilities. The rest is again on our facilities.
So we have a huge performance increase. That means that by the time the operators come in, they have yesterday’s information and they can make the right business decisions.

The problem in New Zealand is that there aren't many private clouds that can be used by government agencies. We can’t offshore it because of latency issues and the cost of shipping data to and from the cloud from the ISPs, who know how to charge on international bandwidth.

Gardner: Now that you've put your large set of services together, what are some of the paybacks that you've been able to get? How do you get a return on investment (ROI), which must be pretty sizable to get this infrastructure in place? What are you able to bring back to the public service benefits by having this intelligence, by being able to react in real time?

Jones: There are two bits to this. The traditional data warehouse was bottle-necked. If you take, from an internal business perspective, the processing out of our integrated feed system, which was a batch-driven system, the processing window each night is around 4.5 hours. To process the batch file was just over that.

We were actually running into not getting the batch file processed until about 6 a.m. At that time, the service operators, the bus operators, the ferry operators have already started work for the day. So they weren’t getting yesterday’s information in time to analyze what to do today.

Using the Microsoft APS appliance we've cut that down, and that process now takes about two hours, end-to-end. So we have a huge performance increase. That means that by the time the operators come in, they have yesterday’s information and they can make the right business decisions.

Customer experience

On the public front, I'd put it back to the customer experience. If you go into a car park and have an incident with somebody in the car park, your expectation is that somebody would be monitoring that and somebody will come to your help. Under the old system that was not the case. It would be pure coincidence if that happened.

Under the new scenario, from a public perception, that will be alerted, something will happen, and someone will come to you. So the public safety is a huge step increased. That has no financial ROI directly for us. It has across the medical spectrum and the broader community spectrum, but for us as a transport agency, it has no true ROI, except for customer expectations and perceptions.

Gardner: Well, as taxpayers having expectations met, it's probably a very strong attribute for you. When we look at your architecture, it strikes me that this is probably something more people will be looking to do, because of this IoT trend, where more sensors are picking up more data. It’s data that’s coming in, maybe in the form of a video feed across many different domains or modes. It needs to be dealt with rapidly. What do you see from your experience that might benefit others as they consider how to deal with this IoT architectural challenge?
When you start streaming data in real-time at those volumes, it impacts your data networks. Suddenly your data networks become swamped, or potentially swamped, with large volumes of data.

Jones: We had some key learning from this. That’s a very good point. IoT is all about connecting in devices. When we went from the old CCTV systems to a new one, we didn’t actually understand that some of that data was being aggregated and lost forever at the front end, and what was being received at the back end was only a snippet.

When you start streaming data in real-time at those volumes, it impacts your data networks. Suddenly your data networks become swamped, or potentially swamped, with large volumes of data.

That then drove us to thinking about how to put that through a firewall, and the reality is you can’t. The firewalls aren’t built to handle that. We're running F5’s and we looked at that and they would not have run the volume of CCTV through that.

So then you start driving to other things about how you secure your data, how you secure the endpoints, and tools like looking down your networks so that you understand what’s connected or what’s changed at the connection end, what’s changing in the traffic patterns on your network, become essential to an organization like us, because there is no way we can secure all the endpoints.

Now, a set of traffic lights has a full data connection at the end. If someone opens a cabinet and plugs in a PC, how do you know that they have done that, and that’s what we have got to protect against. The only way to do that is to know that something abnormal is there. It’s not the normal traffic coming from that area of the network, and then we're flagging it and blocking it off. That’s where we are hitting because that’s the only way we can see the IoT working from a security perspective.

Gardner: Now Roger, when you put this amount of data to work, when you've solved some of those networking issues and you have this growing database and historical record of what takes place, that can also be very valuable. Do you expect that you'll be analyzing this data over historical time periods, looking for trends and applying that to feedback loops where you can refine and find productivity benefits? How does this grow over time in value for you as a public-service organization?

Integrated system

Jones: The first real payback for us has been the integrated ticketing system. We run a tag on-tag off electronic system. For the first time, we understand where people are traveling to and from, the times of day they're traveling, and to a certain extent, the demographics of those travelers. We know if they're a child, a pensioner, a student, or just a normal adult type user.

For the first time, we're actually understanding, not only just where people get on, but where they get off and the time. We can now start to tailor our messaging, especially for transport. For instance, if we have a special event, a rugby game or a pop concert, which may only be of interest to a certain segment of the population, we know where to put our advertising or our messaging about the transport options for that. We can now tailor that to the stops where people are there at the right time of day.
We could never do that before, but from a planning perspective, we now have a view of who travels across town, who travels in and out of the city, how often, how many times a day.

We could never do that before, but from a planning perspective, we now have a view of who travels across town, who travels in and out of the city, how often, how many times a day. We've never ever had that. The planners have never had that. When we get the parking information coming in about the parking occupancy, that’s a new set of data that we have never had.

This is very much about the planners having reliable information. And if we go through the license plate reading, we'll be able to see where trucks come into the city and where they go through.

One of our big issues at the moment is that we have got a link route that goes into the port for the trucks. It's a motorway. How many of the trucks use that versus how many trucks take the shortcut straight through the middle of the city? We don’t know that, and we can do ad-hoc surveys, but we'll hit that in real time constantly, forever, and the planners can then use that when they are planning the heavy transport options.

Gardner: I’m afraid we will have to leave it there. We have been learning about how big data, modern networks, and a tiered architectural approach has helped a transportation agency in New Zealand improve its public safety, its reaction to traffic and other congestion issues, and also set in place a historic record to help it improve its overall transportation capabilities.

So I'd like to thank our guest, Roger Jones, CTO for Auckland Transport in Auckland, New Zealand. Thank you, Roger.
Start Your
HPE Vertica
Community Edition Trial Now
Jones: Thanks very much.

Gardner: And thank you, too, to our audience for joining us for this Hewlett Packard Enterprise transformation and innovation interview. I’m Dana Gardner, Principal Analyst at Interarbor Solutions, your host for this ongoing series of HPE-sponsored discussions. Thanks again for listening, and come back next time.

Listen to the podcast. Find it on iTunes. Get the mobile app. Download the transcript. Sponsor: Hewlett Packard Enterprise.

Transcript of a discussion on the impact and experience of using Internet of Things technologies together with big data analysis in a regional public enterprise. Copyright Interarbor Solutions, LLC, 2005-2016. All rights reserved.

 You may also be interested in



  • Extreme Apps approach to analysis makes on-site retail experience king again
  • How New York Genome Center Manages the Massive Data Generated from DNA Sequencing


  • Microsoft sets stage for an automated hybrid cloud future with Azure Stack Technical Preview
  • The Open Group president, Steve Nunn, on the inaugural TOGAF User Group and new role of EA in business transformation
  • Learn how SKYPAD and HPE Vertica enable luxury brands to gain rapid insight into consumer trends
  • Procurement in 2016—The supply chain goes digital
  • Redmonk analysts on best navigating the tricky path to DevOps adoption
  • DevOps by design--A practical guide to effectively ushering DevOps into any organization
  • Need for Fast Analytics in Healthcare Spurs Sogeti Converged Solutions Partnership Model
  • HPE's composable infrastructure sets stage for hybrid market brokering role
  • Nottingham Trent University Elevates Big Data's role to Improving Student Retention in Higher Education
  • Forrester analyst Kurt Bittner on the inevitability of DevOps
  • Agile on fire: IT enters the new era of 'continuous' everything
  • Big data enables top user experiences and extreme personalization for Intuit TurboTax
  • Thursday, February 11, 2016

    How New York Genome Center Manages the Massive Data Generated from DNA Sequencing

    Transcript of a discussion on how the drive to better diagnose diseases and develop more effective treatments is aided by swift, cost efficient, and accessible big data analytics infrastructure.

    Listen to the podcast. Find it on iTunes. Get the mobile app. Download the transcript. Sponsor: Hewlett Packard Enterprise.

    Dana Gardner: Hello, and welcome to the next edition of the HPE Discover Podcast Series. I'm Dana Gardner, Principal Analyst at Interarbor Solutions, your host and moderator for this ongoing discussion on IT innovation and how it’s making an impact on people’s lives.

    Gardner
    Our next big-data use case leadership discussion examines how the non-profit New York Genome Center manages and analyzes up to 12 terabytes of data generated each day from its genome sequence appliances. We’ll learn how the drive to better diagnose disease and develop more effective treatments is aided by swift, cost efficient, and accessible big-data analytics.

    To hear how genome analysis pioneers exploit vast data outputs to then speedily correlate for time-sensitive reporting, please join me in welcoming our guest.
    Start Your
    HPE Vertica
    Community Edition Trial Now
    We're here with Toby Bloom, Deputy Scientific Director for Informatics at the New York Genome Center in New York. Welcome, Toby.

    Toby Bloom: Hi. Thank you.

    Gardner: First, tell us a little bit about your organization. It seems like it’s a unique institute, with a large variety of backers, consortium members. Tell us about it.

    Bloom
    Bloom: New York Genome Center is about two-and-a-half years old. It was formed initially as a collaboration among 12 of the large medical institutions in New York: Cornell, Columbia, NewYork-Presbyterian Hospital, Mount Sinai, NYU, Einstein Montefiore, and Stony Brook University. All of the big hospitals in New York decided that it would be better to have one genome center than have to build 12 of them. So we were formed initially to be the center of genomics in New York.

    Gardner: And what does one do at a center of genomics?

    Bloom: We're a biomedical research facility that has a large capacity to sequence genomes and use the resulting data output to analyze the genomes, find the causes of disease, and hopefully treatments of disease, and have a big impact on healthcare and on how medicine works now.

    Gardner: When it comes to doing this well, it sounds like you are generating an awesome amount of data. What sort of data is that and where does it come from?

    Bloom: Right now, we have a number of genome sequencing instruments that produce about 12 terabytes of raw data per day. That raw data is basically lots of strings of As, Cs, Ts and Gs -- the DNA data from genomes from patients who we're sequencing. Those can be patients who are sick and we are looking for specific treatment. They can be patients in large research studies, where we're trying to use and correlate a large number of genomes to find the similarities that show us the cause of the disease.

    Gardner: When we look at a typical big data environment such as in a corporation, it’s often transactional information. It might also be outputs from sensors or machines. How is this a different data problem when you are dealing with DNA sequences?

    Lots of data

    Bloom: Some of it’s the same problem, and some of it’s different. We're bringing in lots of data. The raw data, I said, is probably about 12 terabytes a day right now. That could easily double in the next year. But than we analyze the data, and I probably store three to four times that much data in a day.

    In a lot of environments, you start with the raw data, you analyze it, and you cook it down to your answers. In our environment, it just gets bigger and bigger for a long time, before we get the answers and can make it smaller. So we're dealing with very large amounts of data.

    We do have one research project now that is taking in streaming data from devices, and we think over time we'll likely be taking in data from things like cardiac monitors, glucose monitors, and other kinds of wearable medical devices. Right now, we are taking in data off apps on smartphones that are tracking movement for some patients in a rheumatoid arthritis study we're doing.
    In our environment, it just gets bigger and bigger for a long time, before we get the answers and can make it smaller. So we're dealing with very large amounts of data.

    We have to analyze a bunch of different kinds of data together. We’d like to bring in full medical records for those patients and integrate it with the genomic data. So we do have a wide variety of data that we have to integrate, and a lot of it is quite large.

    Gardner: When you were looking for the technological platforms and solutions to accommodate your specific needs, how did that pan out? What works? What doesn’t work? And where are you in terms of putting in place the needed infrastructure?

    Bloom: The data that comes off the machines is in large files, and a lot of the complex analysis we do, we do initially on those large files. I am talking about files that are from 150 to 500 gigabytes or maybe a terabyte each, and we do a lot of machine-learning analysis on those. We do a bunch of Bayesian statistical analyses. There are a large number of methods we use to try to extract the information from that raw data.
    Start Your
    HPE Vertica
    Community Edition Trial Now
    When we've figured out the variance and mutations in the DNA that we think are correlated with the disease and that we were interested in looking at, we then want to load all of that into a database with all of the other data we have to make it easy for researchers to use in a number of different ways. We want to let them find more data like the data they have, so that they can get statistical validation of their hypotheses.

    We want them to be able to find more patients for cohorts, so they can sequence more and get enough data. We need to be able to ask questions about how likely it is, if you have a given genomic variant, you get a given disease. Or, if you have the disease, how likely it is that you have this variant. You can only do that if it’s easy to find all of that data together in one place in an organized way.

    So we really need to load that data into a database and connect it to the medical records or the symptoms and disease information we have about the patients and connect DNA data with RNA data with epigenetic data with microbiome data. We needed a database to do that.

    We looked at a number of different databases, but we had some very hard requirements to solve. We were looking for one that could handle trillions of rows in a table without failing over, tens of trillions of rows without falling over, and to be able to answer queries fast across multiple tables with tens of trillions of rows. We need to be able to easily change and add new kinds of data to it, because we're always finding new kinds of data we want to correlate. So there are things like that.

    Simple answer

    We need to be able to load terabytes of data a day. But more than anything, I had a lot of conversations with statisticians about why they don’t like databases, about why they keep asking me for all of the data in comma-delimited files instead of databases. And the answer, when you boiled it down, was pretty simple.

    When you have statisticians who are looking at data with huge numbers of attributes and huge numbers of patients, the kinds of statistical analysis they're doing means they want to look at some much smaller combinations of the attributes for all of the patients and see if they can find correlations, and then change that and look at different subsets. That absolutely requires a column-oriented database. A row-oriented relational database will bring in the whole database to get you that data. It takes forever, and it’s too slow for them.

    So, we started from that. We must have looked at four or five different databases. Hewlett Packard Enterprise (HPE) Vertica was the one that could handle the scale and the speed and was robust and reliable enough, and is our platform now. We're still loading in the first round of our data. We're still in the tens of billions of rows, as opposed to trillions of rows, but we'll get there.
    We must have looked at four or five different databases. Vertica was the one that could handle the scale and the speed and was robust and reliable enough and is our platform now.

    Gardner: You’re also in the healthcare field. So there are considerations around privacy, governance, auditing, and, of course, price sensitivity, because you're a non-profit. How did that factor into your decision? Is the use of off-the-shelf hardware a consideration, or off-the-shelf storage? Are you looking at conversion infrastructure? How did you manage some of those cost and regulatory issues?

    Bloom: Regulatory issues are enormous. There are regulations on clinical data that we have to deal with. There are regulations on research data that overlap and are not fully consistent with the regulations on clinical data. We do have to be very careful about who has access to which sets of data, and we have all of this data in one database, but that doesn’t mean any one person can actually have access to all of that data.

    We want it in one place, because over time, scientists integrate more and more data and get permission to integrate larger and larger datasets, and we need that. There are studies we're doing that are going to need over 100,000 patients in them to get statistical validity on the hypotheses. So we want it all in one place.

    What we're doing right now is keeping all of the access-control information about who can access which datasets as data in the database, and we basically append clauses to every query to filter down the data to the data that any particular user can use. Then we'll tell them the answers for the datasets they have and how much data that’s there that they couldn’t look at, and if they needed the information, how to go try to get access to that.

    Gardner: So you're able to manage some of those very stringent requirements around access control. How about that infrastructure cost equation?

    Bloom: Infrastructure cost is a real issue, but essentially, what we're dealing with is, if we're going to do the work we need to do and deal with the data we have to deal with, there are two options. We spend it on capital equipment or we spend it on operating costs to build it ourselves.

    In this case, not all cases, it seemed to make much more sense to take advantage of the equipment and software, rather than trying to reproduce it and use our time and our personnel's time on other things that we couldn’t as easily get.

    A lot of work went into HPE Vertica. We're not going to reproduce it very easily. The open-source tools that are out there don’t match it yet. They may eventually, but they don’t now.

    Getting it right

    Gardner: When we think about the paybacks or determining return on investment (ROI) in a business setting, there’s a fairly simple straightforward formula. For you, how do you know you’ve got this right? What is it when you see certain, what we might refer to in the business world as service-level agreements (SLAs) or key performance indicators (KPIs)? What are you looking for when you know that you’ve got it right and when you’re getting the job done, based all of its requirements and from all of these different constituencies?

    Bloom: There’s a set of different things. The thing I am looking for first is whether the scientists who we work with most closely, who will use this first, will be able to frame the questions they want to ask in terms of the interface and infrastructure we’ve provided.

    I want to know that we can answer the scientific questions that people have with the data we have and that we’ve made it accessible in the right way. That we’ve integrated, connected and aggregated the data in the right ways, so they can find what they are looking for. There's no easy metric for that. There’s going to be a lot of beta testing.
    The place where this database is going to be the most useful, not by any means the only way it will be used, is in our investigations of common and complex diseases, and how we find the causes of them and how we can get from causes to treatments.

    The second thing is, are we are hitting the performance standards we want? How much data can I load how fast? How much data can I retrieve from a query? Those statisticians who don’t want to use relational databases, still want to pull out all those columns and they want to do their sophisticated analysis outside the database.

    Eventually, I may convince them that they can leave the data in the database and run their R-scripts there, but right now they want to pull it out. I need to know that I can pull it out fast for them, and that they're not going to object that this is organized so they can get their data out.

    Gardner: Let's step back to the big picture of what we can accomplish in a health-level payback. When you’ve got the data managed, when you’ve got the input and output at a speed that’s acceptable, when you’re able to manage all these different level studies, what sort of paybacks do we get in terms of people’s health? How do we know we are succeeding when it comes to disease, treatment, and understanding more about people and their health?

    Bloom: The place where this database is going to be the most useful, not by any means the only way it will be used, is in our investigations of common and complex diseases, and how we find the causes of them and how we can get from causes to treatments.

    I'm talking about looking at diseases like Alzheimer’s, asthma, diabetes, Parkinson’s, and ALS, which is not so common, but certainly falls in the complex disease category. These are diseases that are caused by some combinations of genomic variance, not by a single gene gone wrong. There are a lot of complex questions we need to ask in finding those. It takes a lot of patience and a lot of genomes, to answer those questions.

    The payoff is that if we can use this data to collect enough information about enough diseases that we can ask the questions that say it looks like this genomic variant is correlated with this disease, how many people in your database have this variant and of those how many actually have the disease, and of the ones who have the disease, how many have this variant. I need to ask both those questions, because a lot of these variants confer risk, but they don’t absolutely give you the disease.

    If I am going to find the answers, I need to be able to ask those questions and those are the things that are really hard to do with the raw data in files. If I can do just that, think about the impact on all of us? If we can find the molecular causes of Alzheimer’s that could lead to treatments or prevention and all of those other diseases as well.

    Gardner: It’s a very compelling and interesting big data use case, one of the best I’ve heard.

    I am afraid we’ll have to leave it there. We've been examining how the New York Genome Center manages and analyzes vast data outputs to speedily correlate for time-sensitive reporting, and we’ve learned how the drive to better diagnose diseases and develop more effective treatments is aided by swift, cost efficient, and accessible big data analytics infrastructure.
    Start Your
    HPE Vertica
    Community Edition Trial Now
    So, join me in thanking our guest, Toby Bloom, Deputy Scientific Director for Informatics at the New York Genome Center. Thank you so much, Toby.

    Bloom: Thank you, and thanks for inviting me.

    Gardner: Thank you also to our audience for joining us for this big data innovation case study discussion. I'm Dana Gardner, Principal Analyst at Interarbor Solutions, your host for this ongoing series of HPE-sponsored discussions. Thanks again for listening, and come back next time.

    Listen to the podcast. Find it on iTunes. Get the mobile app. Download the transcript. Sponsor: Hewlett Packard Enterprise.

    Transcript of a discussion on how the drive to better diagnose diseases and develop more effective treatments is aided by swift, cost efficient, and accessible big data analytics infrastructure. Copyright Interarbor Solutions, LLC, 2005-2016. All rights reserved.

    You may also be interested in: