Thursday, August 16, 2012

Columbia Sportswear Extends Deep Server Virtualization to Improved ERP Operations, Disaster Recovery Efficiencies

Transcript of a sponsored BriefingsDirect podcast on how Columbia Sportswear has harnessed virtualization to provide a host of benefits for its business units.

Listen to the podcast. Find it on iTunes/iPod. Download the transcript. Sponsor: VMware.

Dana Gardner: Hi, this is Dana Gardner, Principal Analyst at Interarbor Solutions, and you're listening to BriefingsDirect.

Today, we present a sponsored podcast discussion on how outerwear and sportswear maker and distributor Columbia Sportswear has used virtualization techniques and benefits to improve their business operations.

We’ll see how Columbia Sportswear’s use of deep virtualization assisted in rationalizing its platforms and data center, as well as led to benefits in their enterprise resource planning (ERP) implementation. We’ll also see how it formed a foundation for improved disaster recovery (DR) best practices.

Stay with us now to learn more about how better systems make for better applications that deliver better business results. Here to share their virtualization journey is Michael Leeper, Senior Manager of IT Engineering at Columbia Sportswear in Portland, Oregon. Welcome, Michael. [Disclosure: VMware is a sponsor of BriefingsDirect podcasts.]

Michael Leeper: Good morning, Dana.

Gardner: We’re also here with Suzan Frye, Manager of Systems Engineering at Columbia Sportswear. Welcome to BriefingsDirect, Suzan.

Suzan Frye: Good morning, Dana.

Gardner: Let’s start with you, Michael. Tell me a little bit about how you got into virtualization. What were some of the requirements that you needed to fulfill at the data center level? Then we’ll dig down into where that went and what it paid off.

Leeper: Pre-2009, we'd experimented with virtualization. It'd be one of those things that I had my teams working on, mostly so we could tell my boss that we were doing it, but there wasn’t a significant focus on it. It was a nice toy to play with in the corner and it helped us in some small areas, but there were no big wins there.

In mid-2009, the board of directors at Columbia decided that we, as a company, needed a much stronger DR plan. That included the construction of a new data center for us to house our production environments offsite.

As we were working through the requirements of that project with my teams, it became pretty clear for us that virtualization was the way we were going to make that happen. For various reasons, we set off on this path of virtualization for our primary data center, as we were working through issues surrounding multiple data centers and DR processes.

Our technologies weren't based on the physical world any more. We were finding more issues in physical than we were in virtual. So we started down this path to virtualize our entire production world. By that point, mid-2010 had come around, and we were ready to go. We had built our DR stack that virtualized our primary data centers taking us to the 80 percent to 90 percent virtual machine (VM) rate.

Extremely successful


We were extremely successful in that process. We were able to move our primary data center over a couple of weekends with very little downtime to the end users, and that was all built on VMware technology.

About a week after we had finished that project, I got a call from our CIO, who said he had purchased a new ERP system, and Columbia was going to start down the path of a fully new ERP implementation.

I was being asked at that time what platform we should run it on, and we had a clean slate to look everywhere we could to find what our favorite, what we felt was the most safe and stable platform to run the crown jewels of the company which is ERP. For us that was going to be the SAP stack.

So it wasn't a hard decision to virtualize ERP for us. We were 90 percent virtual anyway. That’s what we were good at, and that’s where teams were staffed and skilled at. What we did was design the platform that we felt was going to meet our corporate standards and really meet our goals. For us that was running ERP on VMware.

Gardner: It sounds as if you had a good rationale for moving into a highly virtualized environment, but that it made it easier for you to do other things. Am I reading too much into it, or would you really say that your migration for ERP was much easier as a result of being highly virtualized?

It wasn't a hard decision to virtualize ERP for us. We were 90 percent virtual anyway.



Leeper: There are a couple of things there. Specifically in the migration to virtualization, we knew we were going to have to go through the effort of moving operating systems from one site to another. We determined that we could do that once on the physical side, relatively easily, and probably the same amount of effort as doing it once by converting physical to virtual.

The problem was that the next time we wanted to move services back from one facility to another in the physical world, we're going to have to do that work again. In the virtual space, we never had to do it again.

To make the teams go through the effort of virtualizing a server to then move it to another data center, we all need to do is do the work once. For my engineers, any time we get them to do the mundane stuff once it's better than doing it multiple times. So we got that effort taken care of in that early phase of the project to virtualize our environments.

For the ERP platform specifically, this was a net new implementation. We were converting from a JD Edwards environment running on IBM big iron to a brand-new SAP stack. We didn’t have anything to migrate. This was really built from scratch.

So we didn’t have to worry about a lot of the legacy configurations or legacy environments that may have been there for us. We got to build it new. And by that point in our journey, virtualized was the only way for us to do it. That’s what we do, it’s how we do it, and that's what we’re good at.

Across the board


Gardner: Just for the benefit of our audience, let’s hear a bit more about Columbia Sportswear. You’re manufacturing, distributing, and retailing. I assume you’re doing an awful lot online. Give us a sense of the business requirements behind your story around virtualization, DR, and ERP.

Leeper: Columbia Sportswear is based in Portland, Oregon. We're the worldwide leader in apparel and accessories. We sell primarily outerwear and sportswear products, and a little bit of footwear, globally. We have about 4,000 employees, 50 some-odd physical locations, not counting retail, around the world. The products are primarily manufactured in Asia with sales distribution happening in both Europe and United States.

My teams out of the U.S. manage our global footprint, and we are the sole source of IT support globally from here.

Gardner: Let’s go to Suzan. Suzan, tell me a little bit about the pace at which you were able to embark on this virtualization journey. I saw some statistics that you went from 25 percent to 75 percent in about eight months which was really impressive, and as Michael pointed out, now over 90 percent. How did you get the pace and what was important in keeping that pace going?

Frye: The only way we could do it was with virtualization and using the efficiencies we gained with that. We centrally manage all of IT and engineering globally out of our headquarters in Portland. When we were given the initial project to move our data center and not only move our data center but provide DR services as well, it was a really easy sell to the business.

We could go to the business and explain to them the benefits of virtualization and what it would mean for their application. They wouldn’t have to rebuild and they wouldn’t have to bring in the vendor or any consultants. We can just take their systems, virtualize them, move them to our new data center, and then provide that automatic DR with Site Recovery Manager (SRM).

We had nine months to move our data center and we basically were all hands on deck, everybody on the server engineering team, storage, and networking teams as well. And we had executive support and sponsorship. It was very easy for us to go to the business market virtualization to the business and start down that path where we were socializing the idea. A lot of people, of course, were dragging their feet a little bit. We all know that story.

Once they realized that we could move their application, bring it back up, and then move it between data centers almost seamlessly, it was an instant win for us.



But once they realized that we could move their application, bring it back up, and then move it between data centers almost seamlessly, it was an instant win for us. We went from that 20 percent to 30 percent virtualization. We had about 75 percent when we were in the middle of our DR project, and today we’re actually at around 93 percent.

Gardner: One of the things I hear a lot from people that are doing multiple things with virtualization, like you did, is where to start, how to do this in the right order? Is there anything that you could come back with from your experience on how to do it in the order that incentivizes people to adopt, as you pointed out, but then also allows you to move into these other benefits in a way that compounds the return on investment (ROI)?

Frye: I think it surprises people that we have a "virtualize first" strategy today. Now it’s assumed that your system will be virtual and then all the benefits, the flexibility, the portability, the optimization, and the efficiencies that come with it.

But like most companies, we had to start with some of our lower tier or lower service-level agreement (SLA) systems, our development systems, and start working with the business on getting them to understand some of the benefits that they could gain by working with virtual systems.

Performance is there

Again people are always surprised. Will you have SQL virtualized? Do you have SAP virtualized? And the answer is yes, today we do, and the performance is there, the optimization is there, and that flexibility is there.

If you’re just starting out today, my advice would be to go ahead and start small. Give the business what they want, do it right, and give it the resources it needs to have. Don’t under-promise, over-deliver, and let the business start seeing the efficiencies that they can realize, and some of those hidden efficiencies as well.

We can support DR testing. We can support almost instant data refreshes, cloning, and snapping, so their upgrades are more seamless, and they have an easier back-out plan.

From an engineering and development perspective, we're giving them technologies that they could only dream of four or five years ago. And it’s really benefited the business in that we’re auto-provisioning. We’re provisioning in minutes versus days. We’re granting resources when needed.

It’s a more dynamic process for the business, and we’re really seeing that people are saying, "You’re not just a cost center anymore. You’re enabling us, you’re helping us to do what we need to do and basically doing it on-demand." So our team has really started shining these last few years, especially because of our high virtualization percentage.

If you set off trying to truly attack an entire data center virtualization project, you’re probably not going to be really successful at it



Leeper: For a company that's looking to move to this virtualization space, they’ve got to get some wins. You’ve got to tackle some environments or some projects that you can be successful at, and hopefully by partnering with some business users and business owners who are willing to take a little bit of a chance.

If you set off trying to truly attack an entire data center virtualization project, you’re probably not going to be really successful at it. There are a lot of ways that the business, application vendors, and various things can throw some roadblocks in this.

Once you start chipping away at a couple of them and get above the easy stuff, go find one that maybe on paper is a little difficult, but go get that one done. Then you can very quickly point back to success on that piece and start working your way through the rest of them.

Gardner: Yeah, one of those roadblocks that you mentioned I've heard people refer to is issues around licensing and tracking and audits. How did you deal with that? Was that an issue for you when you got into moving onto a virtualized environment?

Leeper: Sure. It’s one of the first things that always comes up. I'm going to separate VMware and the VMware licensing from app and application licensing. On the application side of the house, it’s getting better today than it was two or three years ago when we started this process.

Be confident

You have to be confident in your ability to deal with vendors and demand support on virtualization layers, work with them to help them understand their virtual licensing packages, and be very confident in your ability to get there.

Early on, we had to just look at some vendors straight in the eye and tell them we were going to do this, because this was the best thing for our business, and they needed to figure out how to support us. In some cases, that's just having your team, when you call them support, not have to open with "We’re running this on a VM."

We know we can replicate and then duplicate things in the background when we need to, but sometimes you just have to be smart about how you engage application partners that may not be quite as advanced as we are and work through that.

On the VMware side, it came down to their understanding where our needs were and how to properly license some of the stuff and work through some of those complexities. But it wasn't anything we spent significant amount of time on.

Gardner: You both mentioned this importance of getting the buy-in on the business side and showing wins early, that sort of thing. Because it’s hard many times to put a concrete connection between something that happens in IT and then a business benefit, was there anything that you can think of specifically that benefited your business that you could then turn around and bring back and say, "Well that’s because we did X, Y, and Z with virtualization?"

I had the pleasure of calling the finance VP and informing him that his environments were ready.



Leeper: One of the cool ones we’ve talked about and used for one of our key wins involves our entire architecture obviously with virtualization being key to that.

We had a business unit acquire an SAP module, specifically the BPC for BW module. That was independent of our overall SAP project and they were being run out of a separate business group.

They came to IT in the very late stages of this purchase and said, "These are our needs and requirements," and it was a fairly intense set of equipment. It was multiple servers, multiple environments, kind of up and down the stack, and they were bringing in outside consultants to help them with their implementation.

The interesting thing was, they had spec'd their statement of work (SOW) with these consultants to not start for the 4 to 6 weeks, because they really believed that's how long it was going to take IT to get them their environments and their hardware, using some of their old understanding of IT’s capabilities.

And reality was that we could provide them their test and developement environments that they needed to start with these consultants within a matter of hours, not weeks, and we were able to do so. I had the pleasure of calling the finance VP and informing him that his environments were ready and they were just probably going to sit idle for the next 4-6 weeks until the consultants actually showed up, which surprised all sorts of people.

Add things later


W
e didn't have all their production capacities, but those are things we could add later. They didn’t need production capacity in the first month of the project anyway. So our ability to have that virtualized infrastructure and be able to rapidly deploy to meet business requirements is one of the really kind of cool things we can do these days.

Gardner: Suzan, you’ve mentioned that as an enabler, not a roadblock. So being able to keep up with the speed of business, I suppose, is the best way to characterize this?

Frye: Absolutely. Going back to SRM, another big win for us was, as we were rolling out on some of our Tier 1 mission-critical applications, it was decided by the business that they wanted to test DR. They were going down the path of doing that the old-fashioned way by backing up databases, restoring databases, and taking weeks to do that, days and weeks.

We said, "We think we have a better way with SRM and our replication technologies. We have that data here. Why don't you let us clone that data and stand it up for you?" Literally, within 10 seconds, they had a replica of their data.

So we were enabling them to do their DR testing with SRM, on demand, when they wanted to do that, as well as giving them the benefit of doing the faster cloning and data refreshes. That was just a day-to-day, operational activity that they had no idea we could do for them.

It goes back to working with business and letting them know what you can do. From a day-to-day, practical perspective that was one of our biggest wins.



It goes back to working with business and letting them know what you can do. From a day-to-day, practical perspective that was one of our biggest wins. It's going to specific business units and application owners and saying, "We think we have a better way. What do you think about this?" Once they got their hands on it, just looking at their faces was really a good moment for us.

Gardner: Sure, and of course, as an online retailer, having that dependability that DR provides has to be something that lets you sleep a little better at night.

Frye: Just a little bit.

Gardner: Let's talk a little bit about where you go now. Another thing that I often hear in the market is that the benefits of virtualization are ongoing. It's a journey that keeps providing milestones. It doesn't really end.

Do you have any plans around private cloud perhaps, getting more elasticity and fit-for-purpose benefits out of your implementations? Perhaps you're looking to bring other applications into the fold, or maybe you’ve got some other plans around delivering on business applications at lower cost.

So where do you go next with your virtualization payoff?

Private cloud

Leeper: We consider ourselves having up a private cloud on-site. My team will probably start laughing at me for using that term, but we do believe we have a very flexible and dynamic environment to deploy, based on business request on premises, and we're pretty proud of that. It works pretty well for us.

Where we go next is all over the place. One of the things we're pretty happy about is the fact that we can think about things a little differently now than probably a lot of our peers, because of how migratory our workloads can be, given the virtualization.

We started looking into things like hybrid cloud approaches and the idea of maybe moving some of our workloads out of our premises, our own data facilities, to a cloud provider somewhere else.

For us, that's not necessarily the discussion around the classic public cloud strategies for scalability and some of those things. For us, it's a temporary space at times, if we are, say, moving an office, we want to be able to provide zero downtime, and we have physical equipment on-premises.

It would be nice to be able to shutdown their physical equipment, move their data, move their workloads up to a temporary spot for four or five weeks, and then bring it back at some point, and let users never see an outage while they are working from home or on the road.

There are some interesting scenarios around DR for us and locations where we don't have real-time DR set up.



There are some interesting scenarios around significant DR for us and locations where we don't have real-time DR set up. For instance, we were looking into some issues in Japan, when Japan unfortunately a year or so ago was dealing with the earthquake and the tsunami fallout in power.

We were looking at how we can possibly move our data out of the country for a period of time, while the infrastructure was stabilizing, specifically power, and then maybe bring it back when things settle down again.

Unfortunately we weren't quite virtual on the edge yet there, but today we think that's something we could do. Thinking about how and where we move data to be at the right place at the right time is where we think the next big win for us.

Then, we get into the application profiles that users are asking for and their ability to spin up environments very quickly to just test something. It lets us get out of having IT as being the roadblock to innovation. A lot of times the business or part of our innovation teams come up with some idea on a concept, an application, or whatever it is. They don't have to wait for IT to fulfill their needs. The environments are right there for them.

So I challenge the teams routinely to think a little bit differently about how we've done things in the past, because our architecture is dramatically different than it was even two years ago.

Gardner: Well, great. We have to leave it there. We've been talking about how outerwear and sportswear maker, Columbia Sportswear has used virtualization technologies and models to improve their business operations. We’ve also seen how better systems makes for better applications that can deliver better business results.

So I’d like to thank our guests for joining this BriefingsDirect podcast. We have been here with Michael Leeper, Senior Manager of IT Engineering at Columbia Sportswear in Portland, Oregon. Thank you so much, Michael.

Leeper: Thank you.

Gardner: And we have been joined by Suzan Frye, Manager of Systems Engineering, also there at Columbia Sportswear. Thanks to you, Suzan.

Frye: Thanks, Dana.

Gardner: This is Dana Gardner, Principal Analyst at Interarbor Solutions. Thanks to you all audience for listening, and come back next time.

Listen to the podcast. Find it on iTunes/iPod. Download the transcript. Sponsor: VMware.

Transcript of a sponsored BriefingsDirect podcast on how Columbia Sportswear has harnessed virtualization to provide a host of benefits for its business units. Copyright Interarbor Solutions, LLC, 2005-2012. All rights reserved.

You may also be interested in:

Monday, August 13, 2012

Ocean Observatories Initiative: Cloud and Big Data Come Together to Give Scientists Unprecedented Access to Essential Climate Information

Transcript of a BriefingsDirect podcast on how cloud and big data come together to offer climate researchers a treasure trove of ongoing, real-time information.

Listen to the podcast. Find it on iTunes/iPod. Download the transcript. Sponsor: VMware.

Dana Gardner: Hi, this is Dana Gardner, Principal Analyst at Interarbor Solutions, and you're listening to BriefingsDirect.

Today, we present a sponsored podcast discussion on a fascinating global ocean studies initiative that defines some of the superlatives around big data, cloud, and middleware integration capabilities.

We'll be exploring the Ocean Observatories Initiative (OOI) and its accompanying Cyberinfrastructure Program. This undertaking by the National Science Foundation aims to provide an unprecedented ability to study the Earth's oceans and climate using myriad distributed data centers and literally oceans' worth of data.

The scale and impact of the science's importance is closely followed by the magnitude of the computer science needed to make that data accessible and actionable by scientists. In a sense, the OOI and its infrastructure program are constructing a big data-scale programmable and integratable cloud fabric.

We’ve gathered three leaders to explain the OOI and how the Cyberinfrastructure Program may not only solve this set of data and compute problems, but perhaps establish a path to how future massive data and analysis problems are solved.

Here to share their story on OOI are our guests:
  • Matthew Arrott, Project Manager at the OOI Cyberinfrastructure. Matthew's career spans more than 20 years in design leadership and engineering management for software and network systems. He’s held leadership positions at Currenex, DreamWorks SKG, Autodesk, and the National Center for Supercomputing Applications. His most recent work has been with the University of California as e-Science Program Manager while focusing on delivering the OOI Cyberinfrastructure capabilities.
  • Michael Meisinger, Managing Systems Architect for the Ocean Observatories Initiative Cyberinfrastructure. Since 2007, Michael has been employed by the University of California, San Diego. He leads a team of systems architects on the OOI Project. Prior to UC San Diego, Michael was a lead developer in an Internet startup, developing a platform for automated customer interactions and data analysis. Michael holds a master's degree in computer science from the Technical University of Munich and will soon complete a PhD in formal services-oriented computing and distributed systems architecture.
Michael Meisinger, could you sum up the OOI for our audience? Let us know a little bit about how it came about.

Ocean Observatories Initiative


Michael Meisinger: Thanks, Dana. The Ocean Observatories Initiative is a large project. It's a US National Science Foundation project that is intended to build a platform for ocean sciences end users and communities interested in this form of data for an operational life span of 30 years.

It comprises a construction period of five years and will integrate a large number of resources and assets. These range from typical oceanographic assets, like instruments that are mounted on buoys deployed in the ocean, to networking infrastructure on the cyberinfrastructure side. It also includes a large number of sophisticated software systems.

I'm the managing architect for the cyberinfrastructure, so I'm primarily concerned with the interfaces through the oceanographic infrastructure, including beta interfaces, networking interfaces, and then primarily, the design of the system that is the network hardware and software system that comprises the cyberinfrastructure.

As I said, OOI’s goals include serving the science and education communities with their needs for receiving, analyzing, and manipulating ocean sciences and environmental data. This will have a large impact on the science community and the overall public, as a whole, because ocean sciences data is very important in understanding the changes and processes of the earth, the environment, and the climate as a whole.

Ocean sciences, as a discipline, hasn't yet received as much infrastructure and central attention as other communities. So the OOI initiative is a very important to bring this to the community. It has an almost $400 million construction budget, and an annual operations budget of $70 million for a planned lifetime of 25 to 30 years.

Gardner: Matthew Arrott, what is the big hurdle here in terms of a compute issue that you've faced. Obviously, it's a tremendously important project with a tremendous amount of data, but from a purely compute requirements perspective, what makes this so challenging?

Matthew Arrott: It has a number of key aspects that we had to address. It's best to start at the top of the functional requirements, which is to provide interactive mission planning and control of the overall instrumentation on the 65 independent platforms that are deployed throughout the ocean.

The issue there is how to provide a standard command-and-control infrastructure over a core set of 800 instruments, about 50 different classes of instrumentation, as well as be able to deploy -- over the 30-year lifecycle -- new instrumentation brought to us by different scientific communities for experimentation.

The next is that the mission planning and control is meant to be interactive and respond to emergent changes. So we needed an event-response infrastructure that allowed us to operate on scales from microseconds to hours in being able to detect and respond to the changes. We needed an ability to move computing throughout the network to deal with the different latency requirements that were needed for the event-response analysis.

Finally, we have computational nodes all the way down in the ocean, as well as on the shore stations, that are accepting or acquiring the data coming off the network. And we're distributing that data in real time to any one who wants to listen to the signals to develop their own sense-and-response mechanisms, whether they're in the cloud, in their local institutions, or on their laptop.

Domain of control

The fundamental challenge was the ability to create a domain of control over instrumentation that is deployed by operators and for processing and data distribution to be agile in its deployment anywhere in the global network.

Gardner: Alexis Richardson, it sounds like a very interesting problem to solve. Why is this a good time to try to solve this? Of course, big data, cloud, doing tremendous amounts of services orientation across middleware and a variety of different formats and transports, is all very prominent in the enterprise now. Given that, what makes this, such an interesting pursuit for you in thinking about this from a software distribution and data distribution perspective?

Alexis Richardson: It really comes down to the scale of the system and the ability of technologies to meet the scale need today. If we had been talking about this 12 years ago, in the year 2000, we would have been talking about companies like Google and Yahoo, which we would not have considered to be of moderate scale.

Since then, many companies have appeared. For example, Facebook, which has many hundreds of millions of users connecting throughout the world, shares vast amounts of data all the time.

It's that scale that's changed the architecture and deployment patterns that people have been using for these applications. In addition to that, many of these companies have brought out essentially a platform capability, whereby others, such as Zynga, in the case of Facebook, can create applications that run inside these networks -- social networks in the case of Facebook.

We can see the OOI project is essentially bringing the science needed to collaborate between vast numbers of sensors and signals and a comparatively smaller number of scientists, research institutions, and scientific applications to do analytics in a similar way as to how Facebook combines what people say, what pictures they post, what music they listen to with everybody’s friends, and then allow an application to be attached to that.

So it’s a huge technology challenge that would have been simply infeasible 12 years ago in the year 2000, when we thought things were big, but they were not. Now, when we talk about big data being masses of terabytes and petabytes that need to be analyzed all the time, then we’re starting to glimpse what's possible with the technology that’s been created in the last 10 years.

It’s a huge technology challenge that would have been simply infeasible 12 years ago.



Arrott: I’d like to actually go one step further than that. The challenge goes beyond just the big data challenge. It also now introduces, as Alexis talked about, the human putting in what they say in their pictures. It introduced that the concept of the instrument as an equal partner with the human in the participation in the network.

So you now have to think about what it means to have a device that’s acting like a human in the network, and the notion that the instrument is, in fact, owned by someone and must be governed by someone, which is not the case with the human, because the human governs themselves. So it represents the notion of an autonomous agent in the network, as well as that agent having a notion of control that has to stay on the network.

Gardner: I’d like to try to explain for our audience a bit more about what is going on here. We understand that we have a tremendous diversity of sensors gathering in real-time a tremendous scale of data. But we’re also talking about automating the gathering and distribution of that data to a variety of applications.

Numerical framework

We’re talking about having applications within this fabric, so that the output is not necessarily data, but is a computational numerical framework that’s then distributed. So there's computation being done at the data level, and then it has to be regulated. Certain data goes to certain people for certain reasons, under certain circumstances.

So there's a lot of data, a lot of logic, and a lot of scale. Can one of you help step me through it all a bit more to understand the architecture of what’s being conducted here?

Meisinger: The challenge, as you mentioned, is very heterogeneous. We deal with various classes of sensors, classes of data, classes of users, or even communities of users, and with classes of technological problems and solution spaces.

So the architecture is based on a tiered model or in a layered model of most invariant things at the bottom, things that shouldn’t change over the lifetime of 30 years to serve the highest level of attention.

Then, we go into our more specialized layered architecture where we try to find optimal solutions using today’s technologies for high-speed messaging, big data, and so on. Then, we go into specialized solutions for specific groups of users and specific sensors that are there as last-mile technologies to integrate them into the system.

Then as you go towards the core, you approach the invariants of the system.



So you basically see an onion layer model of the architecture, externalization outside. Then as you go toward the core, you approach the invariants of the system.

What are the invariants? We recognized that a system of this scale and a system of this heterogeneity cannot be reinvented every five years as part of the typical maintenance. So as a strongly scalable and extensible system, it's distributed in its nature, and as part of the distribution, the most invariant parts are the protocols and the interactions between the distributed entities on the system.

We found that it's essential to define a common language, a common format, for the various applications and participants of the network, including sensor and sensor agents, but also higher-level software services to communicate in a common format.

This architecture is based on defining a common interaction format. It’s based on defining a common data format. You mentioned the complex numerical model. A lot of things in this architecture are defined so that you have an easier model of reaching many heterogeneous communities by ingesting and getting specific solutions into the system, representing them consistently and then presenting them again in the specific format for the audience.

Our architecture is strongly communication-oriented, service-oriented, message-oriented, and federated.

As Matthew mentioned, it’s an important means to have the individual resources, agents, provide their own policies, not having a central bottleneck in the system or central governing entity in the system that defines policies.

Strongly federated


So it’s a strongly federated system. It’s a system that’s strongly technology-independent. The communication product can be implemented by various technologies, and we’re choosing a couple of programming languages and technologies for our initial reference implementation, but it’s strongly extensible for future communities to use.

Gardner: One of the aspects of this that was particularly interesting to me is that this is very much a two-way street. The scientists who are gathering their analysis can very rapidly go back to these sensors, go back to this compute fabric, this fusion of data, and ask it to do other things in real-time; or to bring in data from outside sources to compare and contrast, to find the commonalities and to find what it is that they’re looking for in terms of trends.

Could one of you help me understand why this is a two-way street, and how that's possible given the scale and complexity?

Arrott: The way to think about it, first and foremost, is to think of it as its four core layers. There is the underlying network resource management layer. We talk about agents. They supply that capability to any process in the system, and we create devices that process.

The next layer up is the data layer, and the data layer consists of two core parts. One is the distribution system that allows for data to be moved in real-time from the source to the interested parties. It’s fundamentally a publish-subscribe (pub-sub) model. We're currently using point-to-point as well as topic-based subscriptions, but we're quickly moving toward content-based routing, which is more based on the the selector that is provided by the consumer to direct traffic toward them.

The other part of the data layer is the traditional harvesting or retrieval of data from historical repositories.



The other part of the data layer is the traditional harvesting or retrieval of data from historical repositories.

The next layer up is the analytic layer. It looks a lot like the device layer, but is focused on the management of processes that are using the big data and responding to new arrival of data in the network or change in data in the network. Finally, there is the fourth layer, which is the mission planning and control layer, which we’ll talk about later.

Gardner: Alexis, when you saw the problem that needed to be solved here, you had a lot of experience with advanced message queuing protocol (AMQP), which I'd like you to explain to us, and you also understand the requirements of a messaging system that can accomplish what Matthew just described.

So tell me about AMQP, why this problem seems to be the right fit for that particular technology, RabbitMQ, and a messaging infrastructure in general.

Richardson: What Matthew and Michael have described can be broken down into three fundamental pieces of technology.

Lot of chatter

Number one, you have a lot of chatter coming from these devices -- machines, people, and other kinds of processes -- and that needs to get to the right place. It's being chattered or twittered away and possibly at high rates and high frequencies. It needs to get to just the set of receivers following that stream, very similar to how we understand distribution to our computers. So you need what’s called pub-sub, which is a fundamental technology.

In addition, that data needs to be stored somewhere. People need to go back and audit it, to pull it out of the archive and replay it, or view it again. So you need some form of storage and reliability built into your messaging network.

Finally, you need the ability to attach applications that will be written by autonomous groups, scientists, and other people who don’t necessarily talk to one another, may choose these different programming languages, and may be deploying our applications, as Matthew said, on their own servers, on multiple different clouds that they are choosing through what you would like to be a common platform. So you need this to be done in a standard way.

AMQP is unique in bringing together pub-sub with reliable messaging with standards, so that this can happen. That is precisely why AMQP is important. It's like HTTP and email SMTP, but it’s aimed at messaging the publish-subscribe reliable message delivery in a standard way. And RabbitMQ is one of the first implementations, and that’s how we ended up working with the OOI team -- because RabbitMQ provides these and does it well.

Gardner: Now we’ve talked a lot about computer science and some of the thorny issues that have been created as a result of this project, but, I’d also like to go back to the project itself, and give our listeners a sense of what this can accomplish. I’ve heard it described as "the Hubble Telescope of oceans.

It's the notion that we're providing capabilities that do not currently exist for oceanographers.

"

Let’s go back to the oceanography and the climate science. What can we accomplish with this, when this data is delivered in the fashion we’ve been discussing, where the programmability is there, where certain scientists can interact with these sensors and data, ask it to do things, and then get that information back in a format that’s not raw, but is in fact actionable intelligence?

Matthew, what could possibly happen in terms of the change in our understanding of the oceans from this type of undertaking?

Arrott: The way to think about this is not so much from the fact that we know exactly what will happen. It's the notion that we're providing capabilities that do not currently exist for oceanographers. It can be summed up as continual presence in the oceans at multiple scales through multiple perspectives, also known as the different classes of instrumentation that are observed in the ocean.

Another class of instrumentation is deployed specifically for refocusing. The scope of the OOI is such that it is considered to be observing the ocean at multiple scales -- coastal, regional, and global. It is an expandable model such that other observatories, as well as additions to the OOI network, can be considered and deployed in subsequent years.

This allows us now, as Alexis talked about, to attach many different classes of applications to the network. One of the largest classes of applications that we’ll attach to the network are the modeling, in particular the nowcast and forecast modeling.

Happening at scale

T
hrough those observations about the ocean now, about what the ocean will be, and to be able to ground-truth those models going forward, based on data arriving in the same time as the forecasts, provides for a broad range of modeling that has been done for a fair amount of time, but it now allows it to happen at scale.

Once you have that ability to actually model the oceans and predict where it’s going, you can use that to refocus the instrumentation on emergent events. It's this ability to have long-term presence in the ocean, and the ability to refocus the instrumentation on emergent events, that really represents the revolutionary change in the formation of this infrastructure.

Meisinger: Let me add, I'm very fascinated by The Hubble Space Telescope as something that produces fantastic imagery and fantastic insights into the universe. For me as a computer scientist, it’s often very difficult to imagine what users of the system would do with the system.

I’d like to see the OOI as a platform that’s developed by the experts in their fields to deploy the platforms, the buoys, the cables, the sensors into the ocean that then enables the users of the system over 25 years to produce unprecedented knowledge and results out of that system.

The primary mission of our project is to provide this platform, the space telescope in the ocean. And it’s not a single telescope. In our case, it's a set of 65 buoys, locations in the ocean, and even a cable that runs a 1,000 miles at the seafloor of the Pacific Northwest that provides 10 gigabit ethernet connectivity to the instrument, and high power.

The primary mission of our project is to provide this platform, the space telescope in the ocean.



It’s a model where scientists have to compete. They have to compete for a slot on that infrastructure. They'll have to apply for grants and they'll have to reserve the spot, so that they can accomplish the best scientific discoveries out of that system.

It’s kind of the analogy of the space telescope that will bring ocean scientists to the next level. This is our large platform, our large infrastructure that have the best scientists develop and research to best results. That’s the fascination that I see as part of this project.

Gardner: For the average listener to understand, is this comparable to tracking weather and the climate on the surface? Many of us, of course, get our weather forecasts and they seem to be getting better. We have satellites, radar, measurements, and historical data to compare, and we have models of what weather should do. Is this in some ways taking the weather of the oceans? Is it comparable?

Arrott: Quite comparable. There's a movement to instrument the Earth, so that we can understand from observation, as opposed to speculation, what the Earth is actually doing, and from a notion of climate and climate change, what we might be doing to the Earth as participants on it.

The weather community, because of the demand for commercial need for that weather data, has been well in advance of the other environmental sciences in this regard. What you'll find is that OOI is just one of several ongoing initiatives to do exactly what weather has done.

The work that I did at NCSA, was with the atmospheric sciences community was very clear at the time. What could they do if they had the kind of resources that we now have here in the 21st century? We've worked with them and modeled much of our system based on the systems that they built, both in the research area, and in the operational area in programs such as Nova.

Science more mature


Gardner: So, in a sense, we're following the path of what we’ve done with the weather, and understanding the climate on land. We’re now moving into the oceans, but at a time when the computer science is more mature, and in fact, perhaps even much more productive.

Back to you Alexis Richardson. This is being sponsored by the US National Science Foundation, so being cost efficient is very important, of course. How is it that cloud computing is being brought to bear, making this productive, and perhaps even ahead of where the whole weather and predicting weather has been, because we can now avail ourselves of some of the newer tools and models around data and cloud infrastructure?

Richardson: Happily, that’s an easy one. Imagine if a person or scientist wanted to process very quickly a large amount of data that’s come from the oceans to build a picture of the climate, the ocean, or anything to do with the coastal proprieties of the North American coast. They might need to borrow 10,000 or 20,000 machines for an hour, and they might need to have a vast amount of data readily accessible to those machines.

In the cloud, you can do that, and with big data technologies today, that is a realistic proposition. It was not five to 10 years ago. It’s that simple.

Obviously, you need to have the technologies, like this messaging that we talked about, to get that data to those machines so they can be processed. But, the cloud is really there to bring it altogether and to make it seem to the application owner like something that’s just ready for them to acquire it, and when they don’t need it anymore, they can put it back and someone else can use it.

Its common execution infrastructure subsystem is built in order to enable this access to computation and big data very quickly.



Gardner: Back to you Michael. How do you view the advent of cloud computing as a benefit to this sort of initiative? We have a piece of it from Alexis, but I’d like to hear your perspective on why cloud models are enabling this perhaps at an unprecedented scale, but also at a most efficient cost?

Meisinger: Absolutely. It does enable computing at unprecedented scale for exactly reasons that Alexis mentioned. A lot of the earth's environment is changing. Assume that you’re interested in tracking the effect of a hurricane somewhere in the ocean and you’re interested in computing a very complex numerical model that provides certain predictions about currents and other variables of the ocean. You want to do that when the hurricane occurs and you want to do it quickly. Part of the strategy is to enable quick computation on demand.

The OOI architecture, in particular, its common execution infrastructure subsystem, is built in order to enable this access to computation and big data very quickly. You want to be able to make use of execution provider’s infrastructure as a service very quickly to run your own models with the infrastructure that the OOI provides.

Then, there are other users that want to do things more regularly, and they might have their own hardware. They might run their own clusters, but in order to be interoperable, and in order to have excess overflow capabilities, it’s very important to have cloud infrastructure as a means of making the system more homogenous.

So the cloud is a way of abstracting compute resources of the various participants of the system, be they commercial or academic cloud computing providers or institutions that provide their own clusters as cloud systems, and they all form a large compute network, a compute fabric, so that they can run the computation in a predictable way, but also then in a very episodic way.

Cloud as enabler


I really see that the cloud paradigm is one of the enablers of doing this very efficiently, and it enables us as a software infrastructure project to develop the systems, the architecture, to actually manage this computation from a system’s point of view in a central way.

Gardner: Alexis, because of AMQP and the VMware cloud application platform, it seems to me that you’ve been able to shop around for cloud resources, using the marketplace, because you’ve allowed for interoperability among and between platforms, applications, tools, and frameworks.

Is it the case that leveraging AMQP has given you the opportunity to go to where the compute resources are available at the lowest cost when that’s in your best interest?

Richardson: The dividend of interoperability for the end user and the end customer in this platform environment is ultimately portability -- portability through being able to choose where your application will run.

Michael described it very well. A hurricane is coming. Do you want to use the machines provided by the cloud provider here for this price? Do you want to use your own servers? Maybe your neighboring data center has servers available to you, provided those are visible and provided there is this fundamental interoperability through cloud platforms of the type that we are investing in. Then, you will be able to have that choice. And that lets you make these decisions in a way that you could not do before.

Providing a strong platform or a strong technological footprint that’s not specific to any technology is a great benefit to the community out there.



Gardner: I’m afraid we’re almost out of time, but I want to try to compare this to what this will allow in other areas. It’s been mentioned by Alexis and others that this has got some common features to Twitter, Facebook, or Zynga.

We think of the social environment because of the scale, complexity, and the use of cloud models. But we’re doing far more advanced computational activities here. This is simply not a display of 140 characters, based on a very rudimentary search, for example. These are at the high performance computing (HPC) level, supercomputer-level types of requests and analysis.

So are we combining the best of a social fabric approach and the architecture behind that to what we’ve been traditionally exposed to in high-performance computing and supercomputing? If so, what does that mean for how we could bring this to other types of uses in the future? I’ll throw this out to any of you. How are we doing the best of the old and the new computing, and what does that mean for the future?

Meisinger: This is the direction in which the future will evolve, and it’s the combination of proven patterns of interaction that are emerging out of how humans interact applied to high-performance computing. Providing a strong platform or a strong technological footprint that’s not specific to any technology is a great benefit to the community out there.

Providing a reference architecture and a reference implementation that can solve these problems, that social network for sensor networks and for device computation will be a pattern that can be leveraged by other interested participants, either by participating in the system directly or indirectly, where it’s just taking that pattern and the technologies that come with it and basically bringing it to the next level in the future. Developing it as one large project in a coherent set really yields a technology stack and architecture that will carry us far into the future.

Arrott: With all the incremental change that we're introducing is taking the concepts of Facebook and of Twitter and the notions of Dropbox, which is the ability to move a file to a shared place so someone else can pick it up later, which was really not possible long ago. I had to do an FTP server, put up an HTTP server to accomplish that.

Sharing processes

W
hat we are now adding to the mix is not sharing just artifacts, but we’re actually sharing processes with one another, and then specifically sharing instrumentation. I can say to you, "Here, have a look through my telescope." You can move it around and focus it.

Basically, we introduced the concept of artifacts or information resources, as well as the concept of a taskable resource, and the thing that we’re adding to that which can be shared are taskable resources.

Gardner: I’m just going to throw out a few blue-sky ideas that it seems this could be applicable to ... things like genetics and the human genome, but on an individual basis; or crime statistics, in order to have better insight into human behavior at a massive scale; or perhaps even healthcare, where you’re diagnosing specific types of symptoms and then correlating them across entire regions or genetic patterns that would be brought to bear on those symptoms.

Am I off-base? Is this science fiction? Or am I perhaps pointing to where this sort of capability might go next?

It’s a platform where you can plug in your own system or subsystem that you can then make available to whoever is connected to that platform.



Richardson: The answer to your question is, "Yes," if you add one little phrase into that: in real-time. If, you’re talking about crime statistics, as events happen on the streets, information is gathered and shared and processed. As people go on jobs, if information is gathered, shared, and processed on how people are doing, then you will be able to have the kind of crime or healthcare benefits that you described. I’m sure we could think of lots of use cases. Transport is another one.

Arrott: At the institution in which the OOI Cyberinfrastructure is housed, California Institute of Telecommunication and Information Technology (Calit2), all of the concerns that you’ve mentioned are, in fact, active development research programs, all of which have yielded significant improvements in the computational environment for that scientific community.

Gardner: Michael, last word to you. Where do you see this potentially going in terms of the capability? Obviously, it's a very important activity, with the oceans. But the methods that you’re defining, the implementations that you’re perfecting, where do you see them being applied in the not-too-distant future?

Meisinger: You’re absolutely right. This pattern is very applicable and it’s not that frequent that a research and construction project of that size has an ability to provide an end-to-end technology solution to this challenge of big data combined with real-time analysis and real-time command and control of the infrastructure.

What I see that’s evolving into is, first of all, you can take the solutions build in this project and apply it to other communities that are in need for such a solution. But then it could go further. Why not combine these communities into a larger system? Why not federate or connect all these communities into a larger infrastructure that all is based on common ideas, common standards, and that still enables open participation?

It’s a platform where you can plug in your own system or subsystem that you can then make available to whoever is connected to that platform, whoever you trust. So it can evolve into a large ecosystem, and that does not have to happen under the umbrella of one organization such as OOI.

Larger ecosystem

I
t can happen to a larger ecosystem of connected computing based on your own policies, your own technologies, your own standards, but where everyone shares a common piece of the same idea and can take whatever they want and not consume what they’re not interested in.

Gardner: And as I said earlier, at that very interesting intersection of where you can find the most efficient compute resources available and avail yourself of them with that portability, it sounds like a really powerful combination.

We’ve been talking about how the Ocean Observatories Initiative and its accompanying Cyberinfrastructure Program have been not only feeding the means for the ocean to be better understood and climate interaction to be better appreciated, but we’re also seeing how the architecture behind that is leading to the potential for many other big data, cloud fabric, real-time, compute-intensive applications.

Everyone shares a common piece of the same idea and can take whatever they want and not consume what they’re not interested in.



I’d like to thank our guests, Matthew Arrott, Project Manager at the OOI and the initiative for the Cyberinfrastructure. Thank you so much, Matthew.

Arrott: Thank you.

Gardner: We’ve also been joined by Michael Meisinger, Managing Systems Architect for the OOI Cyberinfrastructure. Thank you, Michael.

Meisinger: Thanks, Dana.

Gardner: And Alexis Richardson, the Senior Director for VMware Cloud Application Platform. Thank you, Alexis.

Richardson: Thank you, very much.

Gardner: And this is Dana Gardner, Principal Analyst at Interarbor Solutions. Thanks to you, our audience, for listening, and come back next time.

Listen to the podcast. Find it on iTunes/iPod. Download the transcript. Sponsor: VMware.

Transcript of a BriefingsDirect podcast on how cloud and big data come together to offer climate researchers a treasure trove of ongoing, real-time information. Copyright Interarbor Solutions, LLC, 2005-2012. All rights reserved.

You may also be interested in:

Tuesday, July 31, 2012

For Steria, Cloud Not So Much a Technology as a Catalyst to Responsive and Agile Business

Transcript of a sponsored BriefingsDirect podcast on how IT service delivery company Steria standardizes processes in the cloud for improved delivery.

Listen to the podcast. Find it on iTunes/iPod. Download the transcript. Sponsor: HP.

Dana Gardner: Hello, and welcome to the next edition of the HP Discover Performance podcast series. I'm Dana Gardner, Principal Analyst at Interarbor Solutions, your co-host and moderator for this ongoing discussing of IT innovation and how it's making an impact on people’s life.

Once again, we're focusing on how IT leaders are improving performance of their services to deliver better experiences and payoffs for businesses and end users alike. [Disclosure: HP is a sponsor of BriefingsDirect podcasts.]

Now, we're joined by our co-host for this sponsored podcast series, Chief Evangelist at HP, Paul Muller. Welcome, Paul. Where are you coming from today?

Paul Muller: Hi, Dana. Today, I'm in a fortunate position. I've been at home now for nearly two weeks running, which is something of a record. I'm down here in Melbourne, Australia.

Gardner: I am glad you can join us from home. We have a fascinating show today, because we are going to learn about how a prominent European IT-enabled business services provider, Steria, is leveraging cloud services to manage complexity and better services to customers. Getting more from cloud services seems to be a huge part of the IT landscape these days.

Paul, is that what you are finding -- that the cloud model is starting to impact this whole notion of effective performance across services in total?

Muller: This is a conversation I've been having a lot lately. The word cloud gets thrown around a lot, but when I drill into the topic, I find that customers are really talking about services and integrating different services, whether they are on-premises, in the public cloud arena, or even that gray land, which is called outsourcing. [Follow Paul on Twitter.]

It's the ability to integrate those different supply models -- internal, external, publicly sourced cloud services -- that really differentiate some of the more forward-leaning organizations from those who are still trying to come to grips with what it means to adopt a cloud service.

Gardner: Maybe a year or two ago, we were focused on the "how" with cloud, and now we seem to be moving beyond that to the "what," what you get regardless of how you do it. Does that sound about right?

Muller: You couldn’t have put it better. The way I had it described to me recently is that it’s moving away from talking about the plumbing to talking about what you're trying to produce. That that’s really the fundamental change that has occurred in the last 18 months.

Business opportunity

W
e've all come to realize that cloud isn’t so much a technology issue, as it is a business opportunity. It’s an opportunity to improve agility and responsiveness, while also increasing flexibility of cost models, which is incredibly important, especially given the uncertain economic outlook that not only different countries have, but even different segments within different countries.

Take something like the minerals and resources areas within my own country, which are booming right now. Whereas, if you look at other areas of business, perhaps media, or particularly print media, right now, they're going through the opposite type of revolution. They're trying to work out how to adjust their cost to declining demand.

Gardner: With that, let’s get to our guest. He's been a leading edge adopter for improving IT service delivery for many years, most recently as the IT Service Management (ITSM) Solution Manager at Steria, based near Paris.

Please join me in welcoming Jean-Michel Gatelais. Welcome to BriefingsDirect, Jean-Michel.

Jean-Michel Gatelais: Thank you very much. Yes, at Steria, I'm in charge of the Central ITSM Solution we provide for our customers, and I am in-charge of the Global ITSM Program Roadmap, including the ongoing integration from ServiceCenter 6 to Service Manager 9. I'm also responsible for the quality of service that we deliver with this solution, and of the transition of new customers on this platform.

Gardner: Let’s start at a high level, Jean-Michel. Because you've been doing this for quite some time with a focus on IT service delivery and ITSM, has this changed quite a bit in just the past few years? If so, what’s different now about IT service delivery than just say few years ago?

Gatelais: It has changed a lot. In fact, few years ago it was something that was very atomic, with different processes and with people running the service with different tools. About three to five years ago, people began to homogenize the processes to run the service, and we saw that in Steria.

In Steria, we bought some companies and we grew. We needed to establish common processes to proceed by a common platform, and that what’s what we did with Service Manager. Now, the way we deliver service is much more mature for all the processes and for the ITSM processes.

Gardner: Paul Muller, how does that jibe with what you're seeing? It sounds like he's very representative of the market in total.

Muller: The desire to standardize processes is a really big driver for organizations as they look to improve efficiency and effectiveness. So it's very similar what we're seeing. In fact, I was going to ask Jean-Michel a question. When you talk about homogenizing processes or improving consistently, how does that help the organization? How does that help Steria and its customers perform better?

IT provider

Gatelais: This allows us to deliver the service, whatever the location or organization, because we're an IT provider. We provide services for our customers that can be offshore, nearshore, in Steria local premises, and even in the plant premises. All the common processes and the solution allow us to do to this independently of the customer. Today with this process, we're able to run services for more than 200 customers.

Gardner: I suppose we should learn a bit more about Steria. You are primarily in Europe and the UK. Tell us a bit about your business, who your customers are, and perhaps some of the high-level goals and strategies that you're pursuing.

Gatelais: Steria is an IT service provider. We are about a little more than 40 years old. Our business is mainly in system integration, application management, business process outsourcing, and infrastructure management services.

We have big customers in all sectors of industry and services, such as public sector, banking, industry, telecom, and so on. We have customers both in France and UK mainly, but in the whole of Europe also. For example, we have British Telecom, Orange, and the public sector in the UK, with police etc.

Gardner: I see among your services that you are delivering cloud Workplace on Command, for example, Infrastructure On Command. Is this a bigger part of your business now? Do you find that servicing your cloud customers is dominating some of your strategic thinking?

We have an industrialized solution, allowing our customers to order infrastructure in a couple of minutes.



Gatelais: Yes. Actually, it’s growing day after day. We launched our cloud offering about 18 months ago. Now we can say that we have an industrialized solution, allowing our customers to order infrastructure in a couple of minutes. And this is really integrated with the whole service management solution and the underlying infrastructure.

Gardner: I suppose this gets to this self-service mentality that we are seeing, Paul. End users are seeking a self-service type of approach. They know that they can get services quite easily through a variety of consumer-based means. They're looking for similar choice and enablement in their business dealings.

It seems that an organization like Steria is at the forefront of attracting that sense of enablement and empowerment and then delivering it through a cloud infrastructure. They're interesting on two levels: one, they're delivering cloud and enablement, but they are also using cloud to power their own ability to do so.

Muller: I don’t know if Jean-Michel has seen this, but we see almost a contradiction within enterprise users of cloud. We see groups that will quite readily go out and adopt cloud services. The so-called consumerization trend is quite prevalent, especially with what I would describe as simple services. For example, office automation tools, collaboration tools, etcetera.

Yet, simultaneously, we see reluctance sometimes, particularly for the IT organization, to let go and cloud source services and applications. I sometimes refer to them as "application huggers" or "server huggers."

Relinquish control

In other words, if they can’t see it or touch it, they're reluctant to relinquish control. The most fascinating part for me is that you can often find those two behaviors inside the very same organization. Sometimes, the same person can have diametrically opposed views about the respective merits of those two approaches. Does that make sense?

Gardner: We should put the question directly to Jean-Michel. Are you selling and delivering cloud services to the IT department or others? Maybe we could call that shadow IT?

Gatelais: We do both. In fact, the cloud today is used both for internal organizations and also for our customers. Then, the cloud offering set-up asks to study a business model to study the way we will sell such service. For us, at the central level at Steria, there is no difference between internal delivery and delivery for our customers.

Gardner: That’s pretty interesting. Do you find that you've had to tailor your services for those non-IT users? Is there something about billing, invoicing, or self-serve that you've put in place in order to better accommodate the non-IT part of the market?

Gatelais: No. In fact, what we're trying to do is to standardize, as much as possible, the basic offering we propose. On top of that, we have additional requests from our customers. Then, we try to adapt our offering to the specific request.

Providing infrastructure services is not so difficult, but providing platform-as-a-service (PaaS) features can be.



Providing infrastructure services is not so difficult, but providing platform-as-a-service (PaaS) features can be. Even software as a service (SaaS) can be simpler than PaaS, because you provide some package services, startup services, instead for platform services. It’s very consumer specific.

Gardner: So you have the opportunity to go with a fairly standardized approach, but then you can customize on top of that. I'd like to hear some more about your different services. I understand that there’s something called Steria Advanced Remote Services or STARS. How does that fit into the mix, Jean-Michel?

Gatelais: STARS is the ITSM platform Steria rolled out about five years ago, and today this is a framework. It's mainly based on HP products, because it's running on HP Service Manager online, Business Service Manager (BSM), and Operations Orchestration.

We see this platform as a service enabler, both service support platform and the service enabler, because we use it to manage and activate the services we propose to our customer, including cloud services, security services, and our new offering, Workplace On Command services.

STARS is the solution to manage value-added services Steria is offering to its customers.

Muller: I have a question for Jean-Michel. When a customer thinks about taking services that maybe they used to run internally and moving those services to Steria, how important is it for them to maintain visibility and control, as they are thinking about moving to cloud?

Depends on the customers

Gatelais: It depends on the customers. You have some customers that are ready to use the services you provide on a common environment, but you also have customers requiring more specific solutions that we can give to them. Steria is developing some facilities to roll out and to instantiate the platforms for dedicated environments.

For example, the STARS solution, with Service Manager in the solution, we can deploy it, instantiate it, when the customer requires it.

Muller: Just following on from that, there's a perception that when you move to cloud services, people don’t really care about visibility, metrics, and service-level reports, because that’s all part of the service-level agreement (SLA). Do you find that customers actually want to see, how their service is performing -- what's the availability and level of security? Do they look for that level of reporting from you?

Gatelais: It depends on the customers. Some are really outsourcing the services. They would only complain if they met some problems on the services.

But other customers want to have the visibility on the quality of service that is delivered by Steria. That means that we need to be able to publish the SLA we have for our offering, but also to publish monthly, for example, the key performance indicators (KPIs) of this platform.

It’s the KPI discussion that is of such great interest to enterprises today.



Muller: And that is certainly a perfect question, because, Dana, it’s the KPI discussion that is of such great interest to enterprises today.

Gardner: Right, and I'm impressed that Steria can manage this variety and be able to provide to each of these customers what they want on their own terms, which is, as you point out, is really what they're calling for.

For you as a provider, that must really amount to quite a bit of complexity. How do you get a handle on that ability to maintain your own profitability while dealing with this level of variability and the different KPIs and giving the visibility to them?

Gatelais: One of the advantages of the cloud structure is that you have to ask these questions in advance. That means that when Steria is designing a new offering, we first design the business model. In fact, that will allow us either to propose some shared services, or for the client that has requested it, some visibility to the services, but based on standard platforms. We try to remain standard in what we propose, and the flexibility is in the configuration of what we propose.

Gardner: How about providing the visibility so that the sense of confidence, which is also so important in these early years of cloud adoption, is maintained? Do you provide specific views, insights, dashboards? What is it that you can provide to your customers so that they feel themselves in control even though they are no longer in a sense running these systems?

Gatelais: We provide the KPIs that are published for the service offering. This will include such information as service availability rates, outage problems, change management, and also activity reporting.

Strategic decisions

Gardner: Let’s look at this for a moment through the eyes of some of your customers, Jean-Michel. They're able to make their own strategic decisions better, knowing what they can do on-premises and what they can do to outsourcing models. They can make determinations about what is core and what’s context for their own capabilities and differentiation. What has that meant for them?

Do you have any anecdotes or insights into some of the benefits to their overall business that they have been able to make, because they can look to an organization like Steria and say, "Here, you do it. We're going to focus on something else?"

Gatelais: Yes. The example I can give is the flexibility the service offering can give to the customers in the software development area.

For example, it allows you to set up some development platforms for a limited period of time, allowing product development. With the service we offer, when the project is finished and you enter into the application management mode, the plant is able to say, "I stopped the server." It's backed up, and if six months later the customer wants to develop a new release of this software, then we would restore his environment. In the meantime, he won't have the use of the platform, but he'll be able to continue his development. This is very flexible.

Gardner: Paul, you must be seeing a lot of this that for many adopters with the test dev, quality assurance, the need for elasticity for those builds and environments around the test and development lifecycle. This sort of provides the killer use case for cloud.

The notion of tying all of that capital equipment up and leaving it idle for that period of time is simply not tenable.



Muller: Yes, but on and off-premises. The interesting part is that the development and test process is such a resource-intensive process, while you are in the middle of that process. But the minute you are done with it, you go from being almost 100 percent busy and consuming 100 percent of the resources, to, in some cases, doing nothing, as Jean-Michel said, for months, possibly, even years, depending on the nature of the project.

The notion of tying all of that capital equipment up and leaving it idle for that period of time is simply not tenable. The idea of moving all of that into a flex up-flex down model is probably one of the single most commonly pursued use cases for both public and private cloud today.

The other one, as Jean-Michel has already spoken to, is that the idea of more discrete services, particularly that of helpdesk, is just going crazy in terms of adoption by customers.

Gardner: Jean-Michel, how about some of the different sectors of the market? Do government clients of yours in Europe and the UK approach this any differently than the private sector? And, do small-to-medium-size businesses (SMBs) seem to be approaching your services or have different requirements than the larger enterprises?

Gatelais: The main difference between government and the private sector is the security issue. Most of governments ask for more confidentiality. They're very often reluctant to share their data or their business, with others. For such clients, we need to have a dedicated offering.

Dedicated offering

F
or example, in the UK, a customer from government didn’t want to run their services on shared platforms and asked for a dedicated environment. Because the whole ITSM offering from Steria is running on just one environment, we were able to instantiate such services only for their use.

Muller: That’s an interesting topic right there, Dana. I don’t know whether you're seeing this a lot in your interactions with clients, but the whole idea that cloud is a shared resource pool works brilliantly on paper.

But as Jean-Michel said, practically speaking, for reasons of data sovereignty, for reasons of security, and in some cases for regulatory reasons, the customer will insist that the service be effectively a hosted solution. It’s not that different from almost a traditional outsourcing situation, would you say, Jean-Michel?

Gatelais: Yes.

Gardner: One of the things I am seeing is some of the vision in terms of cloud a few years ago was that one size would fit all, or that it’s cookie cutter, and that there won’t be a need for high variability. But I think what we are actually seeing in practice, and Jean-Michel is certainly highlighting this, is that the KPIs are going to be different for organizations.

There are going to be different requirements for public and private, large and small, jurisdiction by jurisdiction, regulation and compliance. You really need to be able to have the flexibility, not just at the level of infrastructure, but at the level of the types of services, the way that they're built, invoiced, and measured and delivered.

They're interesting for small organizations, because they don’t have to heavily invest in solutions, and we're able to propose shared solutions.



Gatelais: The way we propose the services is they're interesting for small organizations, because they don’t have to heavily invest in solutions, and we're able to propose shared solutions. This is SaaS, this is cloud, and for them it’s very interesting, because it is much more cheaper.

Gardner: Well, we are going to be coming close to the end of our time. Jean-Michel, I wonder if you have any thoughts for those who might be embarking on something like a STARS capability.

They will be thinking about what they should put in place in order to accommodate the complexity, the security, being able to have granular services that they can deliver regardless of location to the variety of different types of clients. What do you advise others who would be pursuing a similar objective?

Gatelais: With such offerings you have to design and think much more than before, to think before running out your solution. You need to be clear on what you want to propose to what kind of customers, where is the market, and then to design your offering according to this. Then, build your business model according to those assumptions.

Gardner: In North America, we might say that that’s skating to where the hockey puck is going to be, rather than where it is.

Gatelais: Yes.

KPIs that matter

Muller: A question from me, Dana, for Jean-Miche. Right now, I've got a couple of metrics, a couple of KPIs, that matter to me really deeply. From your perspective, are there one or two KPIs that you're looking at at the moment that either make you really happy or that are a cause for concern for you, as you think about business and delivering your services. What are the KPIs that matter to you?

Gatelais: What is very difficult for new services is to evaluate the actual return on investment (ROI). You can establish a business model, a business plan to see if what you will do, you will make some profit with it, but it's much more difficult is to evaluate the ROI.

If I don’t buy this service, it would cost me an amount; if I buy this service, okay, it will cost the service fee, but what would I spend next to that. This is very difficult to measure.

Muller: And it's probably one of the most important KPIs in business, wouldn’t you say, Dana?

Gardner: Absolutely, yes.

Gatelais: It may be basic, but you should take the configuration management process. That is very important, even in cloud offerings. It's very difficult to make evident that if you do some configuration management, you will have higher a ROI than if you don’t do it.

It's very difficult to make evident that if you do some configuration management, you will have higher a ROI than if you don’t do it.



Muller: The cost justification of the investment is the challenge?

Gatelais: Exactly. Today, even internally in Steria, it's much more difficult to get approval to develop and to improve configuration management, because people don’t see the interest, as you don’t sell it directly. It's just a medium to improve your service.

Muller: That’s such a good point. And Dana, it's one of the great benefits. This is going to sound a little bit like an infomercial, but it's worth stating. One of the reasons we've been moving so much of our own management software to the cloud is because it's behind the scenes. It's often seen as plumbing, and people are reluctant to invest often in infrastructure and plumbing, until it has proven its benefit.

It's one of the reasons we've moved to a more variable cost model, or at least have made it available for organizations who might want to dip their toe in the water and show some benefits before they invest more heavily over time.

Distinct line


Gardner: Historically, Paul, it's been difficult to draw a distinct line between technology investments and business payoffs and paybacks, even though we have general productivity numbers to support it.

But now, with that greater insight into the management capabilities along the way, when you do everything as a service, you can meter, you can measure, and you can pay as you go. You're really starting to put in place the mechanisms for determining quite distinctly what the payoffs are from investments in IT at that critical business payoff level. So I think that’s a very interesting development in the market.

Muller: The transparency improves, and because you have a variable cost model, it lowers the pain threshold in terms of people being willing to experiment with an idea, see if it works, see if it has that payoff, that ROI. If it doesn’t, stop doing it, and if it does, do more of it. It's really, really very simple.

Gardner: Right, much less of an art and a bit more of a science, but in a good way.

Muller: Absolutely.

Gardner: I'm afraid we are going to have to leave it there. I'd like to thank you all for joining our discussion, and of course, I'd like to thank our supporter for this series, HP Software, and remind our audience that they can carry on this dialogue with Paul Muller through the Discover Performance Group on LinkedIn.

You can also gain more insights and gather more information on the best of IT performance management at www.hp.com/go/discoverperformance.

And with that, please join me in thanking today's guests, our co-host, Chief Evangelist at HP, Paul Muller. Thanks so much, Paul.

Muller: Good talking to you again, Dana.

Gardner: And also a huge thanks to Jean-Michel Gatelais, IT Service Management Solution Manager at Steria, based near Paris. Thanks so much, Jean-Michel.

Gatelais: You're welcome. It was a pleasure.

Gardner: I'm Dana Gardner, Principal Analyst at Interarbor Solutions, your co-host, and moderator for this ongoing discussion of IT innovation and how it's making an impact on people’s lives. Thanks again for listening, and come back next time.

Listen to the podcast. Find it on iTunes/iPod. Download the transcript. Sponsor: HP.

Transcript of a sponsored BriefingsDirect podcast on how IT service delivery company Steria standardizes processes in the cloud for improved delivery. Copyright Interarbor Solutions, LLC, 2005-2012. All rights reserved.

You may also be interested in: